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Background

Brain mapping

A 100,000-neuron Drosophila
Reconstruction of neuronal wiring diagrams (Fruit fly) brain has been imaged at

synaptic resolution.

Aid in understanding of brain function
Zheng, Zhihao, et al. Cell 174.3 (2018)

Data density: 1 mm3 ~ 1015 pixels ~ Petabytes (PB) ~ 100 million annotation hours

» Brain scales
m Volume (mm3) | Data size (PB) | Completion time
C. elegans ~102 \ \ 1986
Drosophila ~105 ~10-1 ~10-1 2018 Fly Mouse
' s
~108 ~102 ~102 20257
~101 ~106 ~106 ?2?7?
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Background

Scanning Electron-Microscopy (SEM) Imaging Data

* Fib-25 dataset

Drosophila optical lobe

Focused lon Beam (FIB) SEM

At a resolution of 8 x 8 x 8 nm

52 x 53 x 65 uyms3 total volume
 Training: 5203-voxels subvolume

 Testing: 2503-voxels subvolume

Images of cellular structure in consecutive slices
of Fib-25 dataset.

Takemura, Shin-ya, et al. Proceedings of the National Academy of Sciences 112.44 (2015)
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Background

3D volumetric segmentation

Raw imaging data (left) and manually annotated image (left) showing cell boundaries.

3D reconstruction of selected neurons from ~200 slices.
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Background

iteration input and output

ysew

Flood-Filling Networks (FFN)

FFN Convolutional Module

ysew

3x3x3x32 3x3x3x32
33x33x33x32 ‘ Convolution Convolution IEE!» 33x33x33x32
‘SAME’ ‘SAME’

ysew

ysew

CM-1 cm-2 CM-n | eam-11 CM-12 .

Output
Channel

ysew

Januszewski, Michat, et al. Nature methods 15.8 (2018)
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Background

Flood-Filling Networks (FFN)

FFN Convolutional Module

3x3x3x32 3x3x3x32
Convolution Convolution

~ Input
Channel

Mask
Output
Channel

Januszewski, Michat, et al. Nature methods 15.8 (2018)
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Methods

Asynchronous VS Synchronous training

Synchronous training

Asynchronous training @ v ®
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Methods

Large-batch training
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11

§ 40
o)
c
S35+
©
O
Minimum S 30 -
Q
e
© 25+
. Z [ — L —20 o0

® Less noise, larger steps %

® More noise, smaller steps g 20 | | | | | | | | | |
64 128 256 512 1k 2k 4k 8k 16k 32k 64k

SC19 - 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS)

mini-batch size

Goyal, Priya, et al. arXiv preprint arXiv:1706.02677 (2017)
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Throughput (FoVs/sec)

Results

Throughput optimization

» Theta supercomputer (KNL-based system)
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Results

Evaluation metrics

True Positive (TP)
False Positive (FP)
True Negative (TN)
False Negative (FN)

Adapted Rand Error (ARE)

TP+ TN
TP+TN+FP+FN

TP
TP+ FP

TP
TP+ FN

accuracCy =

precision =

recall =

2 X recall

Fl = —
precision + recall

ARE =1 —Fl
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Variation of Information (VOI)
H(X,Y)

H(Y)
H(X) denotes

the entropy of X

VI(X,Y)

VOl = H(X|Y)
VOlerge = H (Y| X)

VOI - VOISpli[ + VOImerge

Arganda-Carreras, Ignacio, et al. Frontiers in neuroanatomy 9 (2015)
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Results

Optimal learning rate scaling
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Results

Training results

(a) (b)

Training validation
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Results

Compute-efficiency VS Time-efficiency
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Results

Effect of batch sizes on efficiency
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Training evaluation

Segmentation VOI

MALA \ 1.1470
CELIS-MC \ 1.1208
3.2085
Original FFN paper 0.0973 (Unagglomerated)
—> 0.9375
Ours 0.1074 LU

(Unagglomerated)

Fib-25 raw imaging data (left) and our volumetric segmentation results (left).
Funke, Jan, et al. arXiv preprint arXiv:1709.02974 (2017)

Wolf, Steffen, et al. Proceedings of the IEEE International Conference on Computer Vision. 2017
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Summary

* Implemented data-parallel synchronous training of FFN and scaled it up to
2048 KNL nodes on Theta

* Reduced FFN training time needed to reach good levels of evaluation quality
* Reduced training enables hyper-parameter optimization

 Important for different data sets
« Showed the tradeoff between compute-efficiency and time-efficiency

« Take-home message: Efficient training on HPC requires efficient usage of
large training batches.
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Future works

« To implement automatic hyperparameter optimization to further improve
training efficiency

e To test different model architectures
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Thank You!

For more information: arXiv 1905.06236

dongws@uchicago.edu
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