Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain Mapping

Wushi Dong¹, Murat Keceli², Rafael Vescovi², Hanyu Li¹, Corey Adams², Elise Jennings², Samuel Flender², Thomas Uram², Venkatram Vishwanath², Nicola Ferrier², Bobby Kasthuri^{1,2}, and Peter Littlewood^{1,2}.

¹University of Chicago ²Argonne National Laboratory

1 SC19 - 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS)

- Background
- Methods
- Results
- Summary

• Background

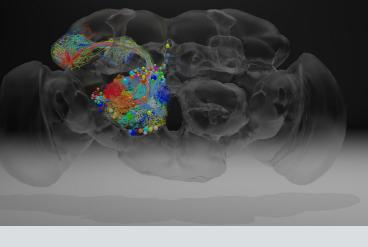
- Methods
- Results
- Summary

Background

Brain mapping

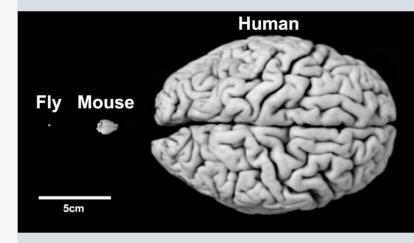
- Reconstruction of neuronal wiring diagrams
- Aid in understanding of brain function
- Data density: 1 mm³ ~ 10¹⁵ pixels ~ Petabytes (PB) ~ 100 million annotation hours
- Brain scales

of neurons Volume (mm³) Data size (PB) Completion time Species C. elegans ~102 1986 Drosophila ~105 ~10-1 ~10-1 2018 ~108 ~10² ~10² 2025? Mouse ~1011 ~106 ~106 ??? Human



A 100,000-neuron *Drosophila* (Fruit fly) brain has been imaged at synaptic resolution.

Zheng, Zhihao, et al. Cell 174.3 (2018)

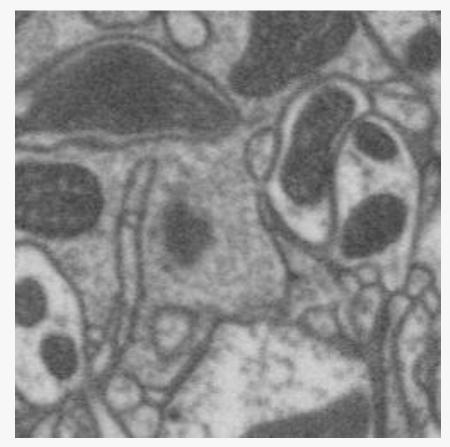


THE UNIVERSITY OF Argonne

Background

Scanning Electron-Microscopy (SEM) Imaging Data

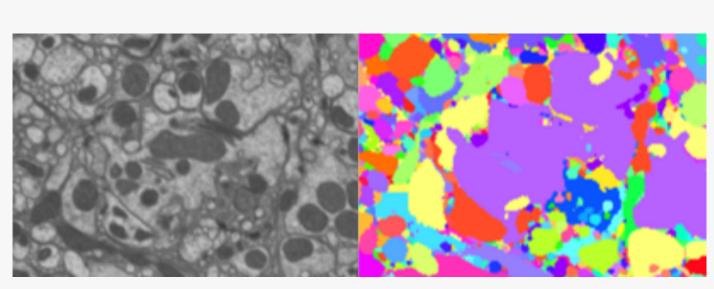
- Fib-25 dataset
 - Drosophila optical lobe
 - Focused Ion Beam (FIB) SEM
 - At a resolution of 8 × 8 × 8 nm
 - 52 × 53 × 65 μ m³ total volume
 - Training: 520³-voxels subvolume
 - Testing: 250³-voxels subvolume



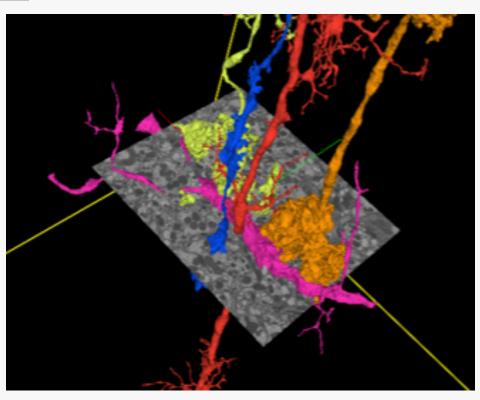
Images of cellular structure in consecutive slices of Fib-25 dataset.

Takemura, Shin-ya, et al. Proceedings of the National Academy of Sciences 112.44 (2015)

3D volumetric segmentation



Raw imaging data (left) and manually annotated image (left) showing cell boundaries.



3D reconstruction of selected neurons from ~200 slices.

Image Input Channel Mask Input Channel

FFN Convolutional Module

3x3x3x32

Convolution

'SAME'

33x33x33x32

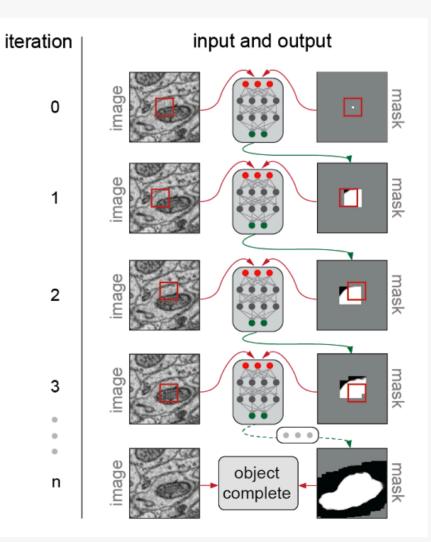
ReLU

3x3x3x32

Convolution

'SAME'

ReLU



Januszewski, Michał, et al. Nature methods 15.8 (2018)

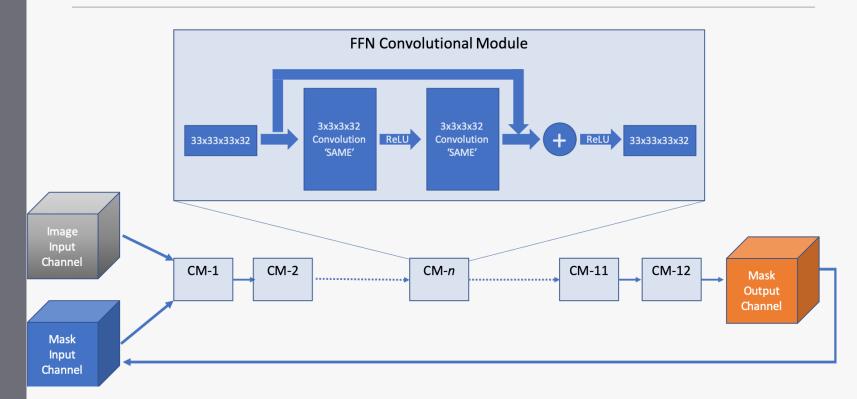
Background

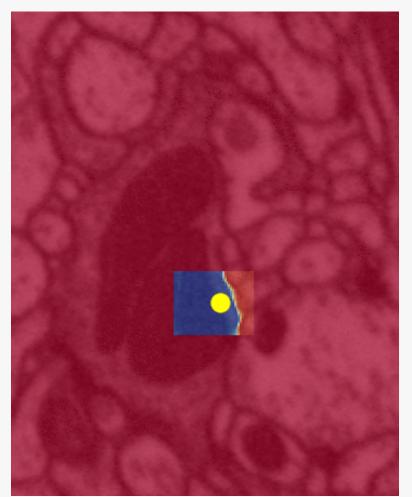
Flood-Filling Networks (FFN)

33x33x33x32

Background

Flood-Filling Networks (FFN)



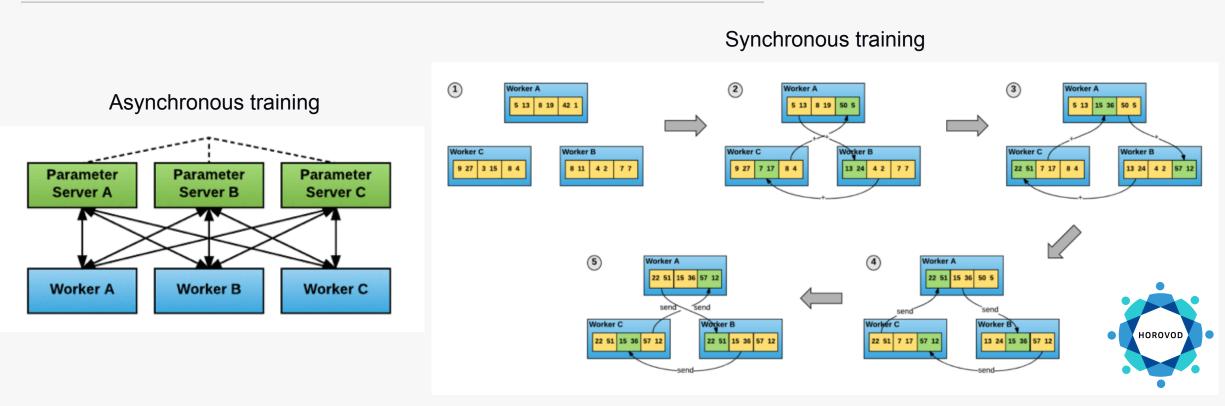


Januszewski, Michał, et al. Nature methods 15.8 (2018)

- Background
- Methods
- Results
- Summary

Methods

Asynchronous VS Synchronous training



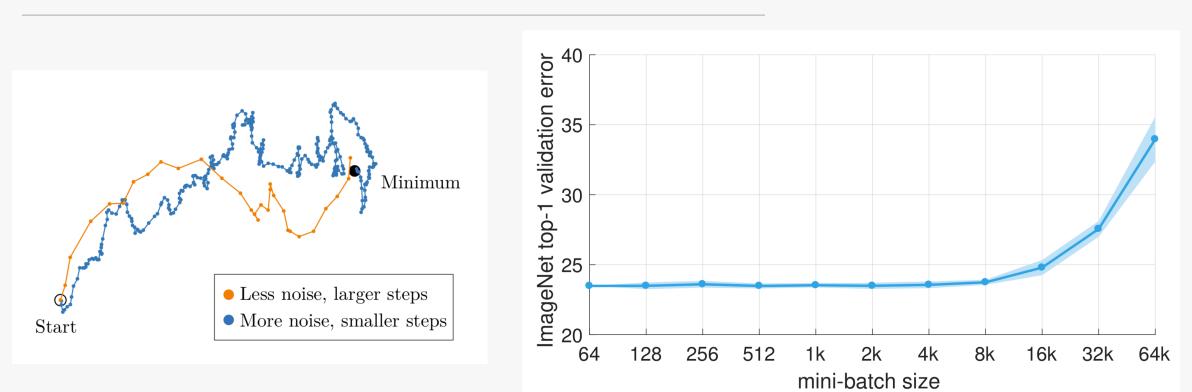
Sergeev, Alexander, and Mike Del Balso. arXiv preprint arXiv:1802.05799 (2018)

THE UNIVERSITY OF CHICAGO

Argonne

Methods

Large-batch training

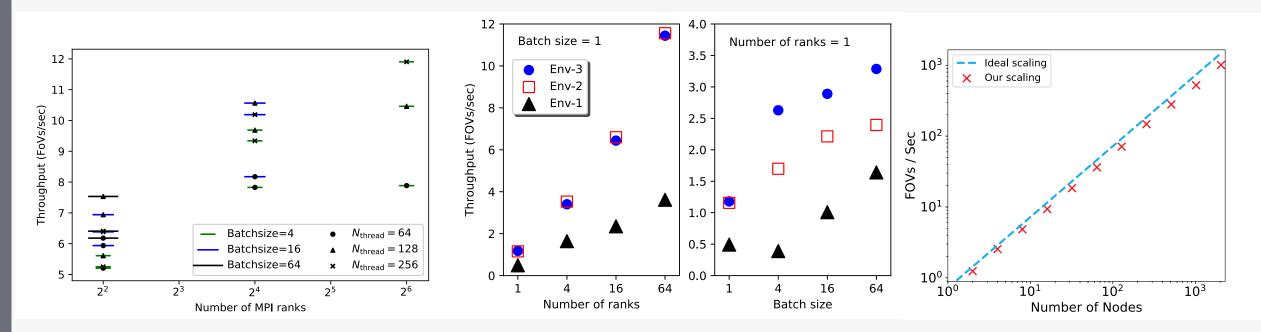


Goyal, Priya, et al. arXiv preprint arXiv:1706.02677 (2017)

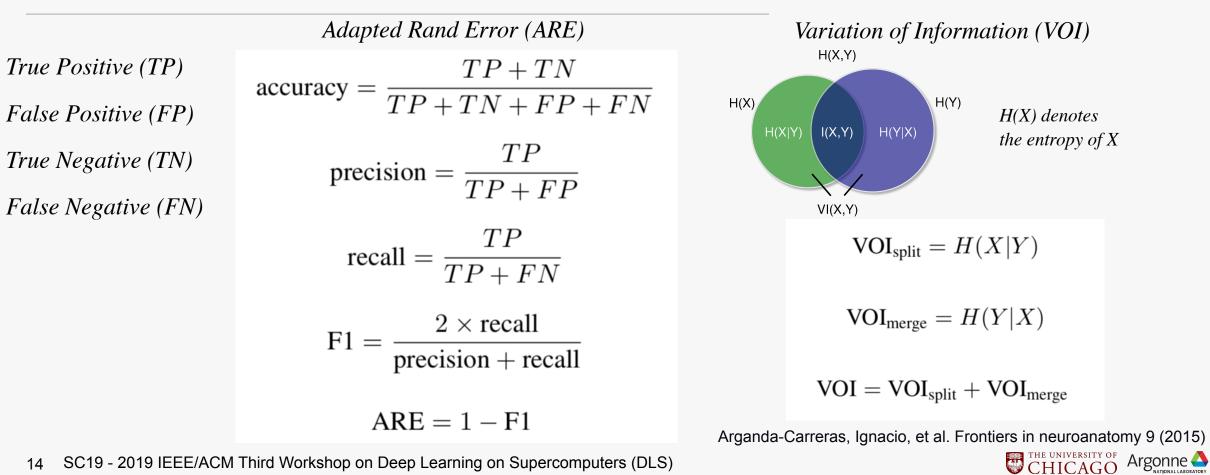
- Background
- Methods
- Results
- Summary

Throughput optimization

• Theta supercomputer (KNL-based system)

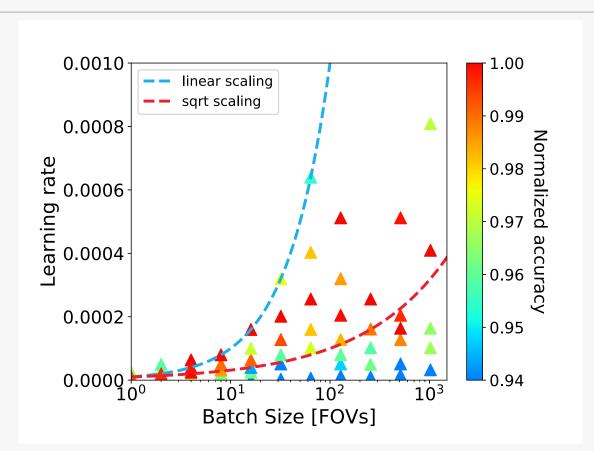


Evaluation metrics



SC19 - 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS) 14

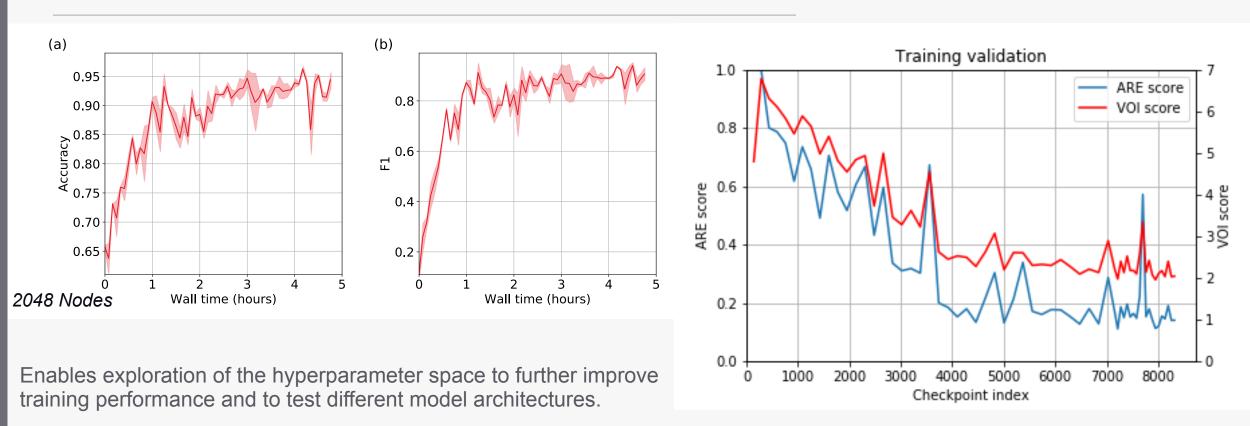
Optimal learning rate scaling



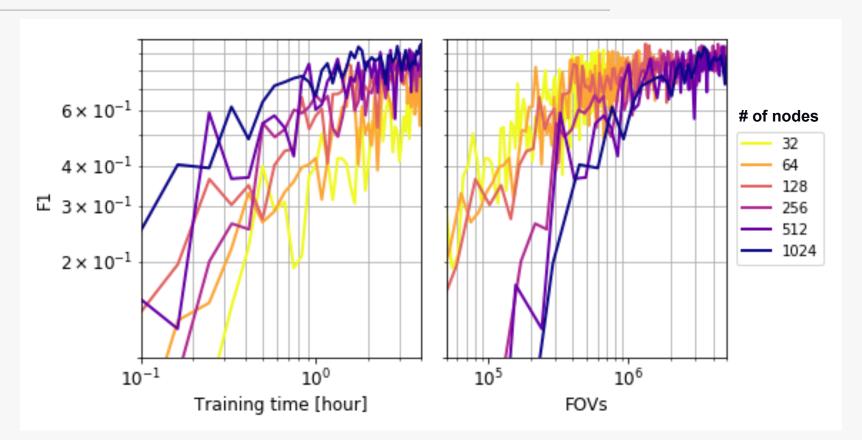
* Normalized accuracy =

Accuracy reached after a certain number of steps Max accuracy reached within the same batch size

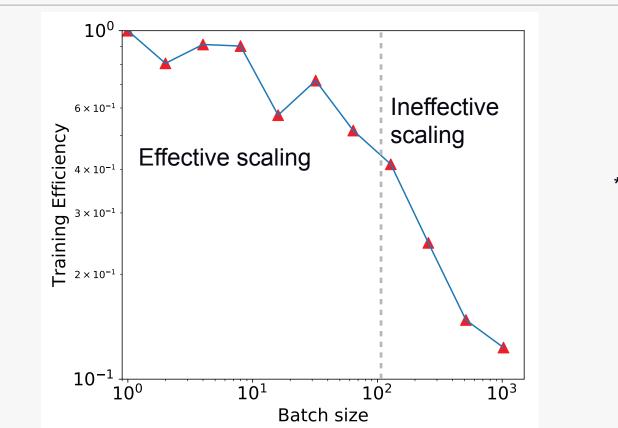
Training results



Compute-efficiency VS Time-efficiency



Effect of batch sizes on efficiency



* Training efficiency =

(Time used to reach a specified F1 score)⁻¹

Training evaluation

	Segmentation	ARE	VOI
	MALA	١	1.1470
	CELIS-MC	١	1.1208
	Original FFN paper	0.0973	3.2085 (Unagglomerated) —> 0.9375
	Ours	0.1074	1.9518 (Unagglomerated)

Fib-25 raw imaging data (left) and our volumetric segmentation results (left).

Funke, Jan, et al. arXiv preprint arXiv:1709.02974 (2017)

Wolf, Steffen, et al. Proceedings of the IEEE International Conference on Computer Vision. 2017

19 SC19 - 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS)

- Background
- Methods
- Results
- Summary

Summary

- Implemented data-parallel synchronous training of FFN and scaled it up to 2048 KNL nodes on Theta
- Reduced FFN training time needed to reach good levels of evaluation quality
- Reduced training enables hyper-parameter optimization
 - Important for different data sets
- Showed the tradeoff between compute-efficiency and time-efficiency
- Take-home message: Efficient training on HPC requires efficient usage of large training batches.

Future works

- To implement automatic hyperparameter optimization to further improve training efficiency
- To test different model architectures

Acknowledgement

- University of Chicago Office of Research and National Laboratories and the Center for Data and Computing (CDAC)
- U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under contract number DE-AC02-06CH11357
- Argonne Leadership Computing Facility

Thank You!

For more information: arXiv 1905.06236

dongws@uchicago.edu

24 SC19 - 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS)

